OTDR測試是通過發射光脈沖到光纖內,然后在OTDR端口接收返回的信息來進行。當光脈沖在光纖內傳輸時,會由于光纖本身的性質、連接器、接合點、彎曲或其它類似的事件而產生散射、反射。其中一部分的散射和反射就會返回到OTDR中。 
  從發射信號到返回信號所用的時間,再確定光在玻璃物質中的速度,就可以計算出距離。以下的公式就說明了OTDR是如何測量距離的。 
d=(c×t)/2(IOR) 
   在這個公式里,c是光在真空中的速度,而t是信號發射后到接收到信號的總時間。因為光在玻璃中要比在真空中的速度慢,所以為了精確地測量距離,被測的光纖必須要指明折射率。IOR是由光纖生產商來標明。 
OTDR使用瑞利散射和菲涅爾反射來表征光纖的特性。瑞利散射是由于光信號沿著光纖產生無規律的散射而形成。OTDR就測量回到OTDR端口的一部分散射光。這些背向散射信號就表明了由光纖而導致的衰減程度。形成的軌跡是一條向下的曲線,它說明了背向散射的功率不斷減小,這是由于經過一段距離的傳輸后發射和背向散射的信號都有所損耗。
  
在高波長區,瑞利散射會持續減小,但另外一個叫紅外線衰減的現象會出現,增加并導致了全部衰減值的增大。因此,1550nm是*低的衰減波長;這也說明了為什么它是作為長距離通信的波長。很自然,這些現象也會影響到OTDR。作為1550nm波長的OTDR,它也具有低的衰減性能,因此可以進行長距離的測試。而作為高衰減的1310nm或1625nm波長,OTDR的測試距離就必然受到限制,因為測試設備需要在OTDR軌跡中測出一個尖鋒,而且這個尖鋒的尾端會快速地落入到噪音中。
 
  換句話說,OTDR的工作原理就類似于一個雷達。它先對光纖發出一個信號,然后觀察從某一點上返回來的是什么信息。這個過程會重復地進行,然后將這些結果進行平均并以軌跡的形式來顯示,這個軌跡就描繪了在整段光纖內信號的強弱。
Mini-OTDR一個*重要的性能,就是能從原有事物中進行辨別,大型的OTDR,就有能力完全、自動地識別出光纖的范圍。這種新的能力大部分是源于使用了高級的分析軟件,這種軟件對OTDR的采樣進行審查并創建一個事件表。這個事件表顯示了所有與軌跡有關的數據,如故障類型,到故障點的距離,衰減,回損和熔接損耗。Mini-OTDR的性能緊緊地依賴于分析軟件,從而具有精確地識別事件的能力。 |
 |
|