剛度提高了7倍;直線電機直接驅動的工作臺無反向工作死區;由于電機慣量小,所以由其構成的直線伺服系統可以達到較高的頻率響應。 1993年,德國ZxCell-O公司推出了世界上*一個由直線電機驅動的工作臺HSC-240型高速加工中心,機床主軸*高速達到24000r/min,*大進給速度為60n/min,加速度達到1g,當進給速度為 20m/min時,其輪廓精度可達0.004mm。美國的Ingersoll公司緊接著推出了HVM-800型高速加工中心,主軸*高轉速為 20000r/min,*大進給速度為75.20m/min。 HIWIN直線電機的大陸直銷熱線是:400-811-5568 1996年開始,日本相繼研制成功采用直線電機的臥式加工中心、高速機床、超高速小型加工中心、超精密鏡面加工機床、高速成形機床等。 我國浙江大學研制了一種由直線電機驅動的沖壓機,浙江大學生產工程研究所設計了用圓筒型直線電機驅動的并聯機構坐標測量機。2001年南京四開公司推出了自行開發的采用直線電機直接驅動的數控直線電機車床,2003年第8屆中國國際機床展覽會上,展出北京電院高技術股份公司推出的VS1250直線電機取得的加工中心,該機床主軸*高轉速達15000r/min。 HIWIN直線電機的工作原理
HIWIN直線電機是一種將電能直接轉換成直線運動機械能,而不需要任何中間轉換機構的傳動裝置。它可以看成是一臺旋轉電機按徑向剖開,并展成平面而成。 由定子演變而來的一側稱為初級,由轉子演變而來的一側稱為次級。在實際應用時,將初級和次級制造成不同的長度,以保證在所需行程范圍內初級與次級之間的耦合保持不變。直線電機可以是短初級長次級,也可以是長初級短次級。考慮到制造成本、運行費用,目前一般均采用短初級長次級。 直線電動機的工作原理與旋轉電動機相似。以直線感應電動機為例:當初級繞組通入交流電源時,便在氣隙中產生行波磁場,次級在行波磁場切割下,將感應出電動勢并產生電流,該電流與氣隙中的磁場相作用就產生電磁推力。如果初級固定,則次級在推力作用下做直線運動;反之,則初級做直線運動。 直線電機的驅動控制技術 一個直線電機應用系統不僅要有性能良好的直線電機,還必須具有能在安全可靠的條件下實現技術與經濟要求的控制系統。隨著自動控制技術與微計算機技術的發展,直線電機的控制方法越來越多。對直線電機控制技術的研究基本上可以分為三個方面:一是傳統控制技術,二是現代控制技術,三是智能控制技術。 傳統的控制技術如PID反饋控制、解耦控制等在交流伺服系統中得到了廣泛的應用。其中PID控制蘊涵動態控制過程中的過去、現在和未來的信息,而且配置幾乎為*優,具有較強的魯棒性,是交流伺服電機驅動系統中*基本的控制方式。為了提高控制效果,往往采用解耦控制和矢量控制技術。 在對象模型確定、不變化且是線性的以及操作條件、運行環境是確定不變的條件下,采用傳統控制技術是簡單有效的。但是在高精度微進給的高性能場合,就必須考慮對象結構與參數的變化。各種非線性的影響,運行環境的改變及環境干擾等時變和不確定因數,才能得到滿意的控制效果。因此,現代控制技術在直線伺服電機控制的研究中引起了很大的重視。常用控制方法有:自適應控制、滑模變結構控制、魯棒控制及智能控制。 近年來模糊邏輯控制、神經網絡控制等智能控制方法也被引入直線電動機驅動系統的控制中。目前主要是將模糊邏輯、神經網絡與PID、H∞控制等現有的成熟的控制方法相結合,取長補短,以獲得更好的控制性能。 HIWIN直線電動機和HIWIN高速滾珠絲杠的發展 作為裝備制造業核心加工設備的數控機床正向高速、高效、高精度、智能化、復合化、環保化方向發展。
在高速和超高速加工中,要求高的動態特性和控制精度;瞬間達到高速和在高速運行中瞬間準停;振動小、噪聲低、運行平穩;可靠性高、壽命長。 在各類線性驅動元部件中,精密高速HIWIN滾珠絲杠(Precicion High-speed Ball Screws——本文簡稱PHS-BS)和AC直線電動機(AC Linear Motor本文簡稱AC-LM)是大型、精密、高速數控裝備的快速伺服進給系統中能滿足上述要求的核心功能部件。 邁入數控裝備領域的AC直線電動機 HIWIN直線電動機是借助于電磁作用原理,HIWIN導軌直接將電能轉換為直線運動的驅動裝置。世界上*一臺直線電動機是英國物理學家惠斯登(Sir Charles Wheatstone)發明,并于1845年取得專利。*初以高速運輸和牽引為主,經過不斷改進后應用范圍逐漸擴大到電腦及辦公設備、半導體制造裝備、醫療裝備、工業自動化、自動繪圖儀等等。 |
 |
|