以膜材、鋼索及支柱構成,利用鋼索與支柱在膜材中導入張力以達安 定的形式。除了可實踐具創意,創新且美觀的造型外,也是*能展現膜結 構精神的構造形式. 近年來,大型跨距空間也多采用以鋼索與壓縮材構成鋼索網來支撐上部膜材的形式。因施工精度要求]高,結構性能強,且具豐 富的表現力,所以造價略高于骨架式膜結構。
3.奧博充氣式膜結構(Pneumatic Structure)
充氣式膜結構是將膜材固定于屋頂結構周邊,利用送風系統讓室內氣壓上升到一定壓力后,使屋頂內外產生壓力差,以抵抗外力,因利用氣壓來支 撐,及鋼索作為輔助材,無需任何梁,柱支撐,可得更大的空間,施工快捷,經濟效益高,但需維持進行24小時送風機運轉,在持續運行及機器維護費用的成本上較高。
現今,城市中已越來越多地可以見到膜結構的身影。奧博膜結構已經被應用到各類建筑結構中,在我們的城市中充當著不可或缺的角色:
體育設施:體育場/體育館/網球場/游泳館/訓練中心/健身中心等
商業設施:商場/游樂中心/酒店/餐廳/商業街等
文化設施:展覽中心/劇院/表演中心/水族館等
交通設施:飛機場/火車站/碼頭/停車場/天橋/加油站/收費站等
景觀設施:標志性小品/廣場標識/小區景觀/步行街等
工業設施:工廠/倉庫/污水處理中心/物流中心/溫室等
用曲面有限單元建立的膜結構分析理論
奧博膜結構的設計可分為三個步驟:
(1)找出一個初始平衡形狀;
(2)各種荷載組合下的力學分析以保證安全;
(3)裁剪制作。發達國家從六十年代起開始提出多種計算方法,
到目前為止以有限元法為*先進、*普遍被采用的方法。而單元類型皆為三角形平面常應變單元,該方法是從剛性板殼大變形理論移植過來的。
從以下分析可以看到,膜結構作為只能抗拉的軟殼體是不適宜采用這種平面單元的,因為對于剛性殼體來說,這種平板單元可以看成平面應力單元和平板彎曲單元的組合,其單元剛陣可以由這兩種單元剛陣合并而成。而膜結構作為軟殼體是不能抗彎的,只能靠薄膜曲面的曲率變化,從而引起膜表面中內力重分布來抵抗垂直于曲面的外荷載。如果還是采用這種只有平面內應力的板單元,則應變的線性部分將不反映平面外z方向位移的影響,這導致單元不包含z方向節點反力,就每個單元來說靜力是不平衡的。所幸的是應變的非線性部分考慮了z向位移的影響,使得各單元合并起來的總的平衡方程通過不斷迭代能近似達到平衡,缺點是需要過多的平面內位移來滿足平衡的要求,而實際情況是只需要一定的平面外和平面內的位移及曲率變化就可以了。
考慮到這些,我國膜結構技術人員在國際上首次采用曲面膜單元,應變的線性部分引入了z向位移及單元的曲率和扭率,非線性部分仍然保留z向位移的影響項。這樣無論是每個單元還是各單元合并后的平衡方程都能很容易滿足,迭代次數大為減少,而變形結果也更符合真實情況。而且由于單元內各點應力都不相同,據此判斷皺折是否出現會更為精確。*后求出的每個單元的曲率和扭率對于判斷初始找形的正誤和優劣以及裁剪下料都能提供很多非常有用的信息。
用曲面有限單元建立的膜結構找形及內力計算方法極小曲面具有非常完美的表面形狀和應力狀態,是膜結構*合理的理想初始狀態。所謂極小曲面是指在給定邊界條件下面積*小的曲面。在這個曲面上任意一點的應力都相等。發達國家從六十年代起開始對膜結構找形提出多種計算方法,如物理模型法,力密度法,動力松馳法等,到目前為止以有限元法為*先進、*普遍采用的方法。不僅國內,迄今國外的計算理論也都是以平面膜單元作為膜結構的計算模型。該方法是從剛性板殼大變形理論移植過來的。膜結構作為只能抗拉的軟殼體是不適宜采用這種平面單元的,其缺點是需要過多的平面內位移來滿足平衡的要求,而實際情況是只需要一定的平面外和平面內的位移及曲率變化就可以了。其后果就是在后面要進行的內力計算時,代入真實材料常數后,由于前面找形得到的極小曲面與實際可能存在的膜結構形狀的差距在視覺上可能不大,但對計算來說卻是不能忽視的,因此計算很容易發散或出現皺折。這也是前面其他方法的共同缺點,他們往往把這一連貫的過程區分成理想化的找形和實際驗算兩個階段,也就不能保證找出的形狀都能用真實的膜材建成等應力極小曲面。 |