以往NAND型閃存的數據線一般為8條,不過從256Mb產品開始,就有16條數據線的產品出現了。但由于控制器等方面的原因,x16芯片實際應用的相對比較少,但將來數量上還是會呈上升趨勢的。雖然x16的芯片在傳送數據和地址信息時仍采用8位一組,占用的周期也不變,但傳送數據時就以16位為一組,帶寬增加一倍。K9K4G16U0M就是典型的64M×16芯片,它每頁仍為2KB,但結構為(1K+32)×16bit。
模仿上面的計算,我們得到如下。K9K4G16U0M讀一個頁需要:6個命令、尋址周期×50ns+25μs+(1K+32)×50ns=78.1μs。K9K4G16U0M實際讀傳輸率:2KB字節÷78.1μs=26.2MB/s。K9K4G16U0M寫一個頁需要:6個命令、尋址周期×50ns+(1K+32)×50ns+300μs=353.1μs。K9K4G16U0M實際寫傳輸率:2KB字節÷353.1μs=5.8MB/s
可以看到,相同容量的芯片,將數據線增加到16條后,讀性能提高近70%,寫性能也提高16%。
5.頻率
工作頻率的影響很容易理解。NAND型閃存的工作頻率在20~33MHz,頻率越高性能越好。前面以K9K4G08U0M為例時,我們假設頻率為20MHz,如果我們將頻率提高一倍,達到40MHz,則
K9K4G08U0M讀一個頁需要:6個命令、尋址周期×25ns+25μs+(2K+64)×25ns=78μs。K9K4G08U0M實際讀傳輸率:2KB字節÷78μs=26.3MB/s。可以看到,如果K9K4G08U0M的工作頻率從20MHz提高到40MHz,讀性能可以提高近70%!當然,上面的例子只是為了方便計算而已。在三星實際的產品線中,可工作在較高頻率下的應是K9XXG08UXM,而不是K9XXG08U0M,前者的頻率目前可達33MHz。
6.制造工藝
制造工藝可以影響晶體管的密度,也對一些操作的時間有影響。譬如前面提到的寫穩定和讀穩定時間,它們在我們的計算當中占去了時間的重要部分,尤其是寫入時。如果能夠降低這些時間,就可以進一步提高性能。90nm的制造工藝能夠改進性能嗎?答案恐怕是否!目前的實際情況是,隨著存儲密度的提高,需要的讀、寫穩定時間是呈現上升趨勢的。前面的計算所舉的例子中就體現了這種趨勢,否則4Gb芯片的性能提升更加明顯。
綜合來看,大容量的NAND型閃存芯片雖然尋址、操作時間會略長,但隨著頁容量的提高,有效傳輸率還是會大一些,大容量的芯片符合市場對容量、成本和性能的需求趨勢。而增加數據線和提高頻率,則是提高性能的*有效途徑,但由于命令、地址信息占用操作周期,以及一些固定操作時間(如信號穩定時間等)等工藝、物理因素的影響,它們不會帶來同比的性能提升。
1Page=(2K+64)Bytes;1Block=(2K+64)B×64Pages=(128K+4K)Bytes;1Device=(2K+64)B×64Pages×4096Blocks=4224Mbits
其中:A0~11對頁內進行尋址,可以被理解為“列地址”。
A12~29對頁進行尋址,可以被理解為“行地址”。為了方便,“列地址”和“行地址”分為兩組傳輸,而不是將它們直接組合起來一個大組。因此每組在*后一個周期會有若干數據線無信息傳輸。沒有利用的數據線保持低電平。NAND型閃存所謂的“行地址”和“列地址”不是我們在DRAM、SRAM中所熟悉的定義,只是一種相對方便的表達方式而已。為了便于理解,我們可以將上面三維的NAND型閃存芯片架構圖在垂直方向做一個剖面,在這個剖面中套用二維的“行”、“列”概念就比較直觀了。
|
 |
|