黃銅性能和用途:
普通黃銅
(1)普通黃銅的室溫組織 普通黃銅是銅鋅二元合金,其含鋅量變化范圍較大,因此其室溫組織也有很大不同。根據Cu-Zn二元狀態圖(圖6),黃銅的室溫組織有三種:含鋅量在35%以下的黃銅,室溫下的顯微組織由單相的α固溶體組成,稱為α黃銅;含鋅量在36%~46%范圍內的黃銅,室溫下的顯微組織由(α+β)兩相組成,稱為(α+β)黃銅(兩相黃銅);含鋅量超過46%~50%的黃銅,室溫下的顯微組織僅由β相組成,稱為β黃銅。
(2)壓力加工性能
α單相黃銅(從H96至H65)具有良好的塑性,能承受冷熱加工,但α單相黃銅在鍛造等熱加工時易出現中溫脆性,其具體溫度范圍隨含Zn量不同而有所變化,一般在200~700℃之間。因此,熱加工時溫度應高于700℃。單相α黃銅中溫脆性區產生的原因主要是在Cu-Zn合金系α相區內存在著Cu3Zn和Cu9Zn兩個有序化合物,在中低溫加熱時發生有序轉變,使合金變脆;另外,合金中存在微量的鉛、鉍有害雜質與銅形成低熔點共晶薄膜分布在晶界上,熱加工時產生晶間破裂。實踐表明,加入微量的鈰可以有效地消除中溫脆性。
兩相黃銅(從H63至H59),合金組織中除了具有塑性良好的α相外,還出現了由電子化合物CuZn為基的β固溶體。β相在高溫下具有很高的塑性,而低溫下的β′相(有序固溶體)性質硬脆。故(α+β)黃銅應在熱態下進行鍛造。含鋅量大于46%~50%的β黃銅因性能硬脆,不能進行壓力加工。
(3)力學性能 黃銅中由于含鋅量不同,機械性能也不一樣,圖7是黃銅的機械性能隨含鋅量不同而變化的曲線。對于α黃銅,隨著含鋅量的增多,σb和δ均不斷增高。對于(α+β)黃銅,當含鋅量增加到約為45%之前,室溫強度不斷提高。若再進一步增加含鋅量,則由于合金組織中出現了脆性更大的r相(以Cu5Zn8化合物為基的固溶體),強度急劇降低。(α+β)黃銅的室溫塑性則始終隨含鋅量的增加而降低。所以含鋅量超過45%的銅鋅合金無實用價值。
普通黃銅的用途極為廣泛,如水箱帶、供排水管、獎章、波紋管、蛇形管、冷凝管、彈殼及各種形狀復雜的沖制品、小五金件等。隨著鋅含量的增加從H63到H59,它們均能很好地承受熱態加工,多用于機械及電器的各種零件、沖壓件及樂器等處。
紫銅性質:
紫銅就是工業純銅,其熔點為1083℃,無同素異構轉變,相對密度為8.9,為鎂的五倍。比普通鋼還重約15%。其具有玫瑰紅色,表面形成氧化膜后呈紫色,故一般稱為紫銅。它是含有一定氧的銅,因而又稱含氧銅。
紫銅 因呈紫紅色而得名。它不一定是純銅,有時還加入少量脫氧元素或其他元素,以改善材質和性能,因此也歸入銅合金。中國紫銅加工材按成分可分為:普通紫銅(T1、T2、T3、T4)、無氧銅(TU1、TU2和高純、真空無氧銅)、脫氧銅(TUP、TUMn)、添加少量合金元素的特種銅(砷銅、碲銅、銀銅)四類。紫銅的電導率和熱導率僅次于銀,廣泛用于制作導電、導熱器材。紫銅在大氣、海水和某些非氧化性酸(鹽酸、稀硫酸)、堿、鹽溶液及多種有機酸(醋酸、檸檬酸)中,有良好的耐蝕性,用于化學工業。另外,紫銅有良好的焊接性,可經冷、熱塑性加工制成各種半成品和成品。20世紀70年代,紫銅的產量超過了其他各類銅合金的總產量。
紫銅中的微量雜質對銅的導電、導熱性能有嚴重影響。其中鈦、磷、鐵、硅等顯著降低電導率,而鎘、鋅等則影響很小。氧、硫、硒、碲等在銅中的固溶度很小,可與銅生成脆性化合物,對導電性影響不大,但能降低加工塑性。普通紫銅在含氫或一氧化碳的還原性氣氛中加熱時,氫或一氧化碳易與晶界的氧化亞銅(Cu2O)作用,產生高壓水蒸氣或二氧化碳氣體,可使銅破裂。這種現象常稱為銅的“氫病”。氧對銅的焊接性有害。鉍或鉛與銅生成低熔點共晶,使銅產生熱脆;而脆性的鉍呈薄膜狀分布在晶界時,又使銅產生冷脆。磷能顯著降低銅的導電性,但可提高銅液的流動性,改善焊接性。適量的鉛、碲、硫等能改善可切削性。紫銅退火板材的室溫抗拉強度為22~25公斤力/毫米2,伸長率為45~50%,布氏硬度(HB)為35~45。
具有優良的導電性﹑導熱性﹑延展性和耐蝕性。主要用于制作發電機﹑母線﹑電纜﹑開關裝置﹑變壓器等電工器材和熱交換器﹑管道﹑太陽能加熱裝置的平板集熱器等導熱器材。常用的銅合金分為黃銅﹑青銅﹑白銅3大類。
純凈的銅是紫紅色的金屬,俗稱“紫銅”、“紅銅”或“赤銅”。
紫銅富有延展性。象一滴水那么大小的純銅,可拉成長達兩公里的細絲,或壓延成比床還大的幾乎透明的箔。紫銅最可貴的性質是導電性能非常好,在所有的金屬中僅次于銀。但銅比銀便宜得多,因此成了電氣工業的“主角”。 |